MATH 369 Introduction to Abstract Algebra (4 units)

Course Outline

Sections	Topics	# of weeks
1.1–1.4	Integers: Divisibility and prime numbers; modular arithmetic. Review as needed: students should be familiar with this from Math 267.	0.0
2.1–2.3	Functions: Brief review of equivalence relations; permutations and cycle notation. Focus on permutations; students should be familiar with most of Sections 2.1 and 2.2 from Math 267.	1.0
3.1–3.8	Groups: Definition of a group and examples; subgroups; cyclic groups; Lagrange's theorem; isomorphisms and homomorphisms; cosets; normal subgroups and factor groups.	4.5
4.1–4.4	Polynomials: Fields; roots of polynomials; factors; division algorithm; extension fields; polynomials over \mathbb{Q} , \mathbb{R} and \mathbb{C} . Emphasize examples of extension fields related to finite fields.	3.5
5.1–5.4	Commutative Rings: Definition of a ring and examples; integral domains; ideals and quotient rings; prime and maximal ideals; fields of quotients. Emphasize examples of quotient rings related to finite fields. Time permitting, discuss irreducible polynomials over \mathbb{Z}_p and the construction of finite fields.	4.0
	Tests	1.0

Textbook: Abstract Algebra, 3rd edition, by J. Beachy and W. Blair.

Adopted: Fall 2007; Revised: Fall 2013.