

**FRSC 422-001 (4892) Advanced Sequencing Techniques (Lecture/Laboratory) (3)**

**Meeting Times: TuTh 2:00 pm-4:20 pm, SC 5325**

**Instructor: Simao, Filipa, Ph.D.**

**Office Hours: M 1:00 am-2:00 pm, W 11:00am-1:pm or by appt.**

**Office: SC 4301G, E-mail: [ffigueirasimao@towson.edu](mailto:ffigueirasimao@towson.edu)**

---

**Catalog Description:**

Theory and application of DNA sequencing technology including Sanger sequencing, pyrosequencing, and massively parallel sequencing and their uses in forensic DNA analysis. Five lecture/laboratory hours. Prerequisites: FRSC 621 Advanced DNA Technologies or permission of instructor.

**Objective:** Students will gain theoretical understanding and laboratory experience with good lab practice, sample handling and preparation, implementing quality assurance and quality control processes, advanced sequencing techniques, data analysis and statistics applied to real world problems.

**Required Text:** Elkins KM and Zeller CB. Next Generation Sequencing in Forensic Science: A Primer. CRC Press / Taylor and Francis, Sept. 16, 2021. ISBN 9781032072043

Additional reading bibliography is provided at the end of this syllabus. Selected readings will be posted on Blackboard.

**Teaching Methods:**

This class will be presented in a lecture/discussion/demonstration/laboratory studio format. Emphasis will be on project-based problem solving and hand-on application of DNA typing and DNA sequencing methods and data analysis using specialized software. Power Point presentations, videos and other visual aids will be used during class. Reading assignments and journal articles will be assigned as appropriate.

**IMPORTANT:** Students who fail to appear for the first two class sessions, or the first session of evening classes, may forfeit their space in class. Instructors have the right to release these spaces to other students wishing to add the class to their schedules. Students who lose their spaces must officially withdraw from the course through Enrollment Services to avoid earning an FX grade for non-attendance.

***Important Dates:***

February 4: Change of Schedule period ends for full term (14 weeks).

Last day to drop a course with no grade posted to academic record.

April 8: Last day to withdraw from full term courses with a grade of W. Last day to change to pass/fail option or audit options.

***No class:***

March 16 - 23: Spring Break

**Attendance:** All classes are considered equally important and full attendance and participation is expected. Analysis and planning for lab work may need to be completed out of class as homework.

***Course repeat policy***

Students may not repeat a course more than once without prior permission of the Academic Standards Committee.

Semester Class Tentative Schedule by Week\*:

*As we are scheduled in a lab, please wear closed-toed shoes and ankle-length pants/skirt. Bring safety goggles for lab activities. All students must take department Lab Safety Quiz.*

| Date                | Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reading                         | Assignment deliveries                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|
| Week 1 (Jan 28 -30) | Introduction to the course - information on evaluation and scheduling<br>History of Human Identity Approaches<br>History of Sequencing for Human DNA Typing<br>Sanger, SNaPshot, Next Generation Sequencing (NGS)<br>Forensic use of NGS<br>Project Topic and Group Pairings                                                                                                                                                                                                                  | Chapter 1<br>Chapter 2          |                                      |
| Week 2 (Feb 4 - 6)  | Sample Preparation, Standards and Library Preparation for Next Generation Sequencing<br>Overview of NGS on MiSeq FgX, Sequencing by synthesis<br>Journal Club #1 (Jäger AC et al., Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories. <i>FSI: Genetics</i> 28 (2017) 52–70.)<br>Research Question and Project Design Development with your group and draft submitted for feedback | Chapter 3<br><br>Journal Club 1 | Journal Club 1<br>February 6         |
| Week 3 (Feb11-13)   | Performing sequencing<br>NGS Data analysis and interpretation<br>Universal software<br>Watch pre-recorded MPS seminar #1 on forensic application<br>Research Question and Project Design Revisions and Submission<br>Ordering and sample collection                                                                                                                                                                                                                                           | Chapter 4<br>Chapter 5          | Project proposal due<br>February 13  |
| Week 4 (Feb 18-20)  | Sample processing<br>DNA extraction<br>DNA quantitation<br>Watch pre-recorded MPS seminar #2 on forensic application                                                                                                                                                                                                                                                                                                                                                                          |                                 | Seminar Summary 1<br>due February 18 |
| Week 5 (Feb 25-27)  | ForenSeq PCR1/Amplify and Tag Targets to create MPS library<br>ForenSeq PCR2/Enrich Targets to attach indexes and adaptors<br>Creating a project in MiSeq ForenSeq software                                                                                                                                                                                                                                                                                                                   |                                 | Seminar Summary 2<br>due February 25 |
| Week 6 (Mar 4-6)    | PCR cleanup/Purify Libraries<br>Library normalization<br>Gel analysis to detect DNA amplicon production                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                      |
| Week 7 (Mar 11-13)  | Operation of MiSeq FgX, Run wash protocol<br>Multiplexing/Pool Libraries, thaw cartridge, denature and dilute libraries, load samples, MiSeq FGx run 1<br>Post-run wash and MiSeq FGx run 2<br>Take home Exam distributed                                                                                                                                                                                                                                                                     | Chapter 6                       |                                      |
| Spring Break        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                      |
| Week 8 (Mar 25-27)  | Did my run work?<br>Run feedback files from MiSeq FGx instrument<br>Post-run wash                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                      |
| Week 9 (Apr 1-3)    | Data analysis on using UAS software & EMPOP: Sequence, Graphs and Charts, Phenotype and Ancestry                                                                                                                                                                                                                                                                                                                                                                                              |                                 | Exam due April 3                     |
| Week 10 (Apr 8-10)  | Journal Club #2 (Kulstein G et al., As solid as a rock comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. <i>Int J Legal Med</i> (2018) 132:13–24.)<br>Project data review and analysis and making graphs and tables                                                                                                                                                                                  | Journal Club 2                  | Journal Club 2<br>April 8            |
| Week 11 (Apr 15-17) | mtDNA NGS<br>Project data review and analysis and writing the final report<br>Preparing a poster presentation                                                                                                                                                                                                                                                                                                                                                                                 | Chapter 7                       |                                      |

|                             |                                                                                                                    |                         |                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
| Week 12<br>(Apr 22-24)      | Microbial NGS<br>Peer Review of final report<br>Preparing an oral presentation<br>Draft Poster Presentation        | Chapter 8               |                     |
| Week 13<br>(Apr 29 - May 1) | Body fluid analysis NGS<br>NGS and the future in forensics<br>Project Report Due<br>Draft Oral Presentation Slides | Chapter 9<br>Chapter 10 | Report due May 1    |
| Week 14<br>(May 6-8)        | Poster Presentations<br>Draft Oral Presentation Slides                                                             |                         | Poster Presentation |
| Week 15<br>(May 13-15)      | Final Exam Week: Oral Project Presentations<br>Oral Presentation                                                   |                         | Oral Presentation   |

**\*Instructor may add additional topics or make schedule changes.**

**Testing and Grading:** No makeup exams or final exam will be given, unless in special emergency as defined by the university. There will be no extra-credit opportunity.

**Grade Points (1000 points total):**

Seminar Summaries (50 points)  
Journal Club (50 points)  
Project Proposal (50 points)  
Research Project Report (200 points)  
Oral Presentation (200 points)  
Poster Presentation (150 points)  
Exam (300 points)

**Grading Scale:**

Grade assignment will be based percent of achieved points above on the standard graduate student system:

A = 930 points or above  
A- = 900 – 929 points  
B+ = 870-899 points  
B = 830-869 points  
B- = 800-829 points  
C+ = 770-799 points  
C = 700-769 points  
D+ = 670-699 points  
D = 600-669 points  
F = less than 600 points.

**Graded Assignments-Details:**

**Seminar Summaries (5%):** Watch pre-recorded NGS seminar and report upon content. Graded for effort and completion.

**Journal Club (5%):** Students will participate in Journal Club paper discussions in class on assigned papers. Graded for effort and insight.

**Research Proposal (5%):** Groups of students will prepare a project proposal complete with a detailed explanation of the number and type of samples, controls, standards, procedures or kits to be used, and research questions. Proposals will be graded by the instructor using a critique rubric. Grading will be based upon study design, thoroughness, and quality of written work.

**Exam (30%):** Each student will be evaluated on their responses to essay questions on a take home Exam. Students will be given one week to complete the exam. Grading will be based upon thoroughness, accuracy, and quality of written work using a rubric.

**Research Project Report (20%):** Students will prepare a Journal of Forensic Sciences quality research report complete with Abstract, Keywords, Introduction, Materials and Methods, Results and Discussion, Conclusion, References, Tables and Figures based upon the group project goals and data. Grading will be based upon thoroughness, accuracy, and quality of written work using a rubric.

**Oral Project Presentation (20%):** Students will present a seminar on the research project report. The total duration (presentation and questions) will be 15 minutes per group. Presentations will be graded by the instructor and other faculty members in attendance using a critique rubric. Grading will be based upon content provided on slides, content delivery and ability to answer questions correctly.

**Poster Project Presentation (15%):** Students will present a poster on the research project. The presentation will occur during the Poster Session scheduled for the week before final exams. Presentations will be graded by the instructor and other faculty members in attendance using a critique rubric. Grading will be based upon content provided, content delivery and ability to answer questions correctly.

#### ***Cell Phones and Pagers***

Cell phone usage in the class meeting/lab is strictly prohibited. If you need to take a call in case of emergency (e.g., sick child, parent care, etc.), exit the classroom to the adjacent hallway.

#### ***Chemistry Department Statement on Classroom Diversity and Inclusion***

The students, faculty, and staff at Towson University represent a diverse and vibrant community of learners and scholars. As a community, we value the unique contributions of each individual and promote active participation in all aspects of the learning process by each community member. Your instructor supports Towson University's goal of fostering a diverse and inclusive educational setting. Your instructor strives to create an educational environment built upon the principles of mutual respect and support. Toward this end, all members participating in this course are expected to demonstrate respect for all other members of the class, both within and outside of the classroom. If you feel these expectations have not been met, please speak with your instructor or the designated diversity liaison, Dr. Cindy Zeller (czeller@towson.edu).

For further information regarding the diversity and inclusion policies of Towson University, please see Towson University's Office of Inclusion and Institutional Equity, the Fisher College of Science and Mathematics Diversity Action Plan, and the Chemistry Department Diversity Action Plan.

#### ***Accessibility & Disability Services***

This course is in compliance with Towson University policies for students with disabilities. Students with disabilities are encouraged to register with Accessibility & Disability Services (ADS), University Union, Suite 146, 410-704-2638 (Voice) or 410-704-4423 (TDD). Students who suspect that they have a disability but do not have documentation are encouraged to contact ADS for advice on how to obtain appropriate evaluation. A memo from ADS authorizing your accommodation is needed before any accommodation can be made. <https://www.towson.edu/accessibility-disability-services/>

#### ***Laboratory Policy for Pregnant Students***

Pregnant students should consult their physicians for advice on whether or not to perform experiments in the laboratory. Students are encouraged to provide their physician with a list of the chemicals that they might be exposed to while in lab. They should also check the SDS sheets (available in the Department) to be aware of the hazards of the chemicals.

If a student is advised against performing laboratory work, then faculty must make accommodations for the student. Any accommodations should comprise a workload that is approximately equivalent to the regularly scheduled laboratory work. These accommodations may include:

- performing "dry" experiments only, in a place free from exposure to ongoing experiments;
- performing the wet chemistry at a later date;
- receiving an incomplete grade in the course pending completion of experimental work

### ***Chat GPT, Open AI and Internet Resources***

As we begin the semester, I want to remind you of the importance of academic integrity. Part of what you learn here at Towson University is how to do your work authentically and honorably, and I am here to help you do that. In my course, you will be given assignments and I will provide you with specific instructions about how to complete them. Sometimes the instructions will tell you to do the work entirely on your own without consulting other people or material, including the internet. At other times, you may be asked to work together or to use certain technology tools. If you are ever uncertain about how you should work on an assignment, please contact me.

### ***Student Academic Integrity Policy (TU 03.01.00)***

The academic integrity policy for this course is consistent with the TU Academic Integrity Policy. The policy can be reviewed here: <https://www.towson.edu/about/administration/policies/03-01-00-studentacademic-integrity-policy.htm>

### ***Title IX Safe Learning Environment***

Towson University (TU) is committed to ensuring a safe, productive learning environment on our campus that does not tolerate sexual misconduct, including harassment, stalking, sexual assault, sexual exploitation, or intimate partner violence [Policy 06.01.60]. It is important for you to know that there are resources available if you or someone you know needs assistance. You may speak to a member of university administration, faculty, or staff, but keep in mind that they have an obligation to report the incident to the Title IX Coordinator. It is a goal that you feel able to share information related to your life experiences in classroom discussions and in one-on-one meetings. However, it is required to share information with the Title IX Coordinator regarding disclosures, but know that the information will be kept private to the greatest extent possible. If you want to speak to someone who is permitted to keep your disclosure confidential, please seek assistance from the TU Counseling Center 410-704-2512 to schedule an appointment, and locally within the community at TurnAround, Inc., 443-279-0379 (24-hour hotline) or 410-377-8111 to schedule an appointment." <http://towson.edu/titleix> (<http://towson.edu/titleix/>).

### ***Reporting Hate Crimes and Bias Incidents***

Towson University prohibits all students, staff, and faculty from committing or engaging in any hate crimes as defined under state and federal law, or any acts of bias, hate, or prejudice exhibited in conduct that is in violation of another University policy on campus, on University property, at University sponsored events, or when engaged in University activities and business on or off campus. The University must receive notice to respond effectively to alleged Hate Crimes or Bias Incidents in the University Community. Please report or file a complaint of a Hate Crime or Bias Incident in the following ways:

- Report to University Police: Towson University's Police Department ("TUPD") will determine if incidents are criminal in nature. In cases of hate crimes, individuals can be punished with fines and/or imprisonment. Felony offenses demonstrated to be motivated by bias are subject to enhanced penalties.
- Contact the Office of Inclusion & Institutional Equity: Online at: <https://towson.edu/notattu>, email at: [OIIIE@towson.edu](mailto:OIIIE@towson.edu), telephone, in person or via regular mail. <https://www.towson.edu/about/administration/policies/06-01-20-policy-procedures-reporting-hate-crimes-bias-incidents.html>

### ***Counseling Resources***

The Towson University Counseling Center (TUCC) provides free and confidential counseling services. For more information about TUCC, please visit their website at <https://www.towson.edu/counseling> (<https://www.towson.edu/counseling/>). To make a same-day appointment or for after-hours crisis assistance, please call 410-704-2512.

### ***In Case of Emergency***

In the event of a University-wide emergency course requirements deadlines and grading schemes are subject to changes that may include alternative delivery methods, alternative methods of interaction with the instructor, class materials, and/or classmates, a revised attendance policy, and a revised semester calendar and/or grading scheme. In the case of a University-wide emergency, please refer to the following about changes in this course:

1. Web Site: [www.towson.edu](http://www.towson.edu)
2. Telephone Number(s)
3. TU Text Alert System: This is a service designed to alert the Towson University community via text messages to cell phones when situations arise on campus that affect the ability of the campus to function normally. Sign up: <https://www.towson.edu/publicsafety/notification/>

### ***Copyright Notice***

Your instructor retains all copyrights to all original materials distributed in this course (including, but not limited to, hard copies and electronic copies of lecture slides, notes, practice problems, worksheets, assignments, lab materials, and exams). Reposting, selling, or otherwise distributing these materials in any fashion at any time is prohibited.

## **Bibliography**

### ***Books:***

Chiu KP. (2015) Next-Generation Sequencing and Sequence Data Analysis, Sarjah, UAE: Bentham Science Books, 170 pp. ISBN: 9781681080925

Wang X. (2016) Next-Generation Sequencing Data Analysis, Boca Raton, FL: CRC Press, 258 pp. ISBN: 9781482217889

### ***Journal Articles:***

Daniel M. Bornman, Mark E. Hester, Jared M. Schuetter, Manjula D. Kasoji, Angela Minard-Smith, Curt A. Barden, Scott C. Nelson, Gene D. Godbold, Christine H. Baker, Boyu Yang, Jacquelyn E. Walther, Ivan E. Tornes, Pearly S. Yan, Benjamin Rodriguez, Ralf Bundschuh, Michael L. Dickens, Brian A. Young, and Seth A. Faith. Short-read, high-throughput sequencing technology for STR genotyping. *Biotech Rapid Dispatches* (2012) 1–6.

Claus Børsting, Niels Morling. Next generation sequencing and its applications in forensic genetics. *Forensic Science International: Genetics* 18 (2015) 78–89.

Stefano Caratti, Stefania Turrina, Melissa Ferrian, Emanuela Cosentino, Domenico De Leo. MiSeq FGx sequencing system: A new platform for forensic genetics. *Forensic Science International: Genetics Supplement Series* 5 (2015) e98–e100.

Jennifer D. Churchill, Sarah E. Schmedes, Jonathan L. King, Bruce Budowle. Evaluation of the Illumina1 Beta Version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. *Forensic Science International: Genetics* 20 (2016) 20–29.

T.H. Clark, A. Gomez, H. Singh, K.E. Nelson, and L.M. Brinkac. Integrating the microbiome as a resource in the forensics toolkit. *Forensic Sci Int: Genetics* 30 (2017) 141-147.

Peter de Knijff. From next generation sequencing to now generation sequencing in forensics. *Forensic Science International: Genetics* 38 (2019) 175–180.

Laurence Devesse, David Ballard, Lucinda Davenport, Immy Riethorst, Gabriella Mason-Buck, Denise Syndercombe Court. Concordance of the ForenSeq™ system and characterisation of sequence specific autosomal STR alleles across two major population groups. *Forensic Science International: Genetics* 34 (2018) 57–61.

Liane Fendt, Bettina Zimmermann, Martin Daniaux, Walther Parson. Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences. *BMC Genomics* 10 (2009) 139.

Jamie M. Gallimore, Jennifer A. McElhoe, Mitchell M. Holland. Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. *Forensic Science International: Genetics* 32 (2018) 7–17.

Katherine Butler Gettings, Kevin M. Kiesler, Seth A. Faith, Elizabeth Montano, Christine H. Baker, Brian A. Young, Richard A. Guerrieri, Peter M. Vallone. Sequence variation of 22 autosomal STR loci detected by next generation sequencing. *Forensic Science International: Genetics* 21 (2016) 15–21.

Katherine Butler Gettings, Lisa A. Borsuk, David Ballard, Martin Bodner, Bruce Budowle, Laurence Devesse, Jonathan King, Walther Parson, Christopher Phillips, Peter M. Vallone. STRSeq: A catalog of sequence diversity at human identification Short Tandem Repeat loci. *Forensic Science International: Genetics* 31 (2017) 111–117.

Fei Guo, Jiao Yu, Lu Zhang, Jun Li. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx™ Forensic Genomics System. *Forensic Science International: Genetics* 31 (2017) 135–148.

Simon Hardwick. Reference standards for next-generation sequencing. *Nature Reviews: Genetics* 18 (2017) 473–484.

James M. Heather, Benjamin Chain. The sequence of sequencers: The history of sequencing DNA. *Genomics* 107 (2016) 1–8.

Mitchell M. Holland, Kateryna D. Makova, Jennifer A. McElhoe. Deep-Coverage MPS Analysis of Heteroplasmic Variants within the mtGenome Allows for Frequent Differentiation of Maternal Relatives. *Genes* 9 (2018) 124.

Jerry Hoogenboom, Kristiaan J. van der Gaag, Rick H. de Leeuw, Titia Sijen, Peter de Knijff, Jeroen F.J. Laros. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise. *Forensic Science International: Genetics* 27 (2017) 27–40.

C. Hussing, C. Børsting, H.S. Mogensen, N. Morling. Testing of the Illumina1 ForenSeq™ kit. *Forensic Science International: Genetics Supplement Series* 5 (2015) e449–e450.

Anne C. Jäger, Michelle L. Alvarez, Carey P. Davis, Ernesto Guzmán, Yonmee Han, Lisa Way, Paulina Walichiewicz, David Silva, Nguyen Pham, Glorianna Caves, Jocelyne Bruand, Felix Schlesinger, Stephanie J.K. Pond, Joe Varlaro, Kathryn M. Stephens, Cydne L. Holt. Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories. *Forensic Science International: Genetics* 28 (2017) 52–70.

Rebecca S. Just Jodi A. Irwin, Walther Parson. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. *Forensic Science International: Genetics* 18 (2015) 131–139.

Eun Hye Kim, Hwan Young Lee, In Seok Yang, Sang-Eun Jung, Woo Ick Yang, Kyoung-Jin Shin. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons. *Forensic Science International: Genetics* 22 (2016) 1–7.

Jonathan L. King, Bobby L. LaRue, Nicole M. Novroski, Monika Stoljarova, Seung Bum Seo, Xiangpei Zeng, David H. Warshauer, Carey P. Davis, Walther Parson, Antti Sajantila, Bruce Budowle. High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. *Forensic Science International: Genetics* 12 (2014) 128–135.

Mingkun Li, Anna Schönberg, Michael Schaefer, Roland Schroeder, Ivane Nasidze, Mark Stoneking. Detecting Heteroplasmy from High-Throughput Sequencing of Complete Human Mitochondrial DNA Genomes. *The American Journal of Human Genetics* 87 (2010) 237–249.

Manfred Kayser, Walther Parson. Transitioning from Forensic Genetics to Forensic Genomics. *Genes* 9 (2018) 3.

Galina Kulstein, Thorsten Hadrys, Peter Wiegand. As solid as a rock comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. *Int J Legal Med* (2018) 132:13–24.

Yan Ma, Jin-Zhi Kuang, Tong-Gang Nie, Wei Zhu, Zhi Yang. Next generation sequencing: Improved resolution for paternal/maternal duos analysis. *Forensic Science International: Genetics* 24 (2016) 83–85.

Charla Marshall, Kimberly Sturk-Andreaggi, Jennifer Daniels-Higginbotham, Robert Sean Oliver, Suzanne Barritt-Ross, Timothy P. McMahon. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure. *Forensic Science International: Genetics* 31 (2017) 198–206.

Jennifer A. McElhoe, Mitchell M. Holland, Kateryna D. Makova, Marcia Shu-Wei Su, Ian M. Paul, Christine H. Baker, Seth A. Faith, Brian Young. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. *Forensic Science International: Genetics* 13 (2014) 20–29.

Vishakha Sharma, Hoi Yan Chow, Donald Siegel, Elisa Wurmbach. Qualitative and quantitative assessment of Illumina's forensic STR and SNP kits on MiSeq FGx™. *PLoS ONE* 12 (2017) e0187932.

Nicole M.M. Novroski, Jonathan L. King, Jennifer D. Churchill, Lay Hong Seah, Bruce Budowle. Characterization of genetic sequence variation of 58 STR loci in four major population groups. *Forensic Science International: Genetics* 25 (2016) 214–226.

Walther Parson, David Ballard, Bruce Budowle, John M. Butler, Katherine B. Gettings, Peter Gill, Leonor Gusmão, Douglas R. Hares, Jodi A. Irwin, Jonathan L. King, Peter de Knijff, Niels Morling, Mechthild Prinz, Peter M. Schneider, Christophe Van Neste, Sascha Willuweit, Christopher Phillips. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. *Forensic Science International: Genetics* 22 (2016) 54–63.

Michelle A. Peck, Kimberly Sturk-Andreaggi, Jacqueline T. Thomas, Robert S. Oliver, Suzanne Barritt-Ross, Charla Marshall. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. *Forensic Science International: Genetics* 34 (2018) 25–36.

C. Phillips, K. Butler Gettings J.L. King, D. Ballard, M. Bodner, L. Borsuk, W. Parson. "The devil's in the detail": Release of an expanded, enhanced and dynamically revised forensic STR Sequence Guide. *Forensic Science International: Genetics* 34 (2018) 162–169.

Molly M. Rathbun, Jennifer A. McElhoe, Walther Parson, Mitchell M. Holland. Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data. *Forensic Science International: Genetics* 26 (2017) 1–11.

M Słomka, et al. High Resolution Melting (HRM) for high-throughput genotyping—Limitations and caveats in practical case studies. *Int J Mol Sci.* 18 (2017) 2316.

Christina Strobl, Mayra Eduardoff, Magdalena M. Bus, Marie Allen, Walther Parson. Evaluation of the precision ID whole MtDNA genome panel for forensic analyses. *Forensic Science International: Genetics* 35 (2018) 21–25.

Kimberly Sturk-Andreaggi, Michelle A. Peck, Cecilie Boysen, Patrick Dekker, Timothy P. McMahon, Charla K. Marshall. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. *Forensic Science International: Genetics* 31 (2017) 189–197.

Kristiaan J. van der Gaag, Rick H. de Leeuw, Jerry Hoogenboom, Jaynish Patel, Douglas R. Storts, Jeroen F.J. Laros, Peter de Knijff. Massively parallel sequencing of short tandem repeats—Population data and mixture analysis results for the PowerSeqTM system. *Forensic Science International: Genetics* 24 (2016) 86–96.

Zheng Wang, Di Zhou, Hui Wang, Zhenjun Jia, Jing Liu, Xiaoqin Qian, Chengtao Li, Yiping Hou. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System. *Forensic Science International: Genetics* 31 (2017) 126–134.

Frank R. Wendt, Jonathan L. King, Nicole M.M. Novroski, Jennifer D. Churchill, Jillian Ng, Robert F. Oldt, Kelly L. McCulloh, Jessica A. Weise, David Glenn Smith, Sreetharan Kanthaswamy, Bruce Budowle. Flanking region variation of ForenSeq™ DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. *Forensic Science International: Genetics* 28 (2017) 146–154.

Frank R. Wendt, Jennifer D. Churchill, Nicole M.M. Novroski, Jonathan L. King, Jillian Ng, Robert F. Oldt, Kelly L. McCulloh, Jessica A. Weise, David Glenn Smith, Sreetharan Kanthaswamy, Bruce Budowle. Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGxTM forensic genomics system. *Forensic Science International: Genetics* 24 (2016) 18–23.

Catarina Xavier, Walther Parson. Evaluation of the Illumina ForenSeq™ DNA Signature Prep Kit – MPS forensic application for the MiSeq FGxTM benchtop sequencer. *Forensic Science International: Genetics* 28 (2017) 188–194.

Yaran Yang, Bingbing Xie, Jiangwei Yan. Application of Next-generation Sequencing Technology in Forensic Science. *Genomics Proteomics Bioinformatics* 12 (2014) 190–197.

Xiangpei Zeng, Jonathan L. King, Monika Stoljarova, David H. Warshauer, Bobby L. LaRue, Antti Sajantila, Jaynish Patel, Douglas R. Storts, Bruce Budowle. High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing. *Forensic Science International: Genetics* 16 (2015) 38–47.