NGSS Connections

www.nextgenscience.org

Mystery of the Crooked Cell Grade Level: Middle School

Performance Expectations: Students' ability to complete the following performance expectation(s) will be supported by participation in this activity.

MS-LS1-2: Develop and use a model to describe the function of a cell as a whole and ways parts of the cells contribute to the function. **MS-LS3-1**: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

MS-LS3-2: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-LS4-4: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

MS-LS4-6: Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Dimension	NGSS Code or citation	Corresponding student task in activity
Disciplinary	LS1.A Structure and Function	Students explore how genes code for proteins, and that
Core Idea	Organisms reproduce, either sexually or asexually, and	different proteins in red blood cells can affect how
	transfer their genetic information to their offspring.	those cells function.
	LS3.A Inheritance of Traits	Students explore how a single mutation in the gene that
	• Genes are located in the chromosomes of cells, with	codes for the protein hemoglobin can lead to changes
	each chromosome pair containing two variants of	in the structure and function of red blood cells.
	each of many distinct genes. Each distinct gene	
	chiefly controls the production of specific proteins,	
	which in turn affects the traits of the individual.	
	Changes (mutations) to genes can result in changes to	
	proteins, which can affect the structures and	
	functions of the organism and thereby change traits.	Students explore the probability of specific genes (sickle
	 Variations of inherited traits between parent and 	or normal hemoglobin) being passed from parent to
	offspring arise from genetic differences that result	offspring.

from the subset of chromosomes (and therefore genes) inherited.	
 LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. 	Students explore how offspring inherit a single allele from each parent, and the combination of the two alleles determines how genes at a particular locus function.
 In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of 	Students explore how a random mutation in the gene that codes for hemoglobin can affect the structure and function of red blood cells, producing sickled cells.
proteins. Some changes are beneficial, others harmful, and some neutral to the organism.	Some classes also explore heterozygote advantage, recognizing that in some areas, individuals with alleles (sickled and normal hemoglobin) may benefit by reducing risk of malaria while minimizing the negative impacts of sickle cell anemia when compared to homozygous individuals.
 LS4.B: Natural Selection Natural selection leads to the predominance of certain traits in a population, and the suppression of others. 	Some classes also explore heterozygote advantage, recognizing that in some areas, individuals with alleles (sickled and normal hemoglobin) may benefit by reducing risk of malaria while minimizing the negative impacts of sickle cell anemia when compared to homozygous individuals. This advantage has retained the sickled gene in the population.
 LS4.C: Adaptation Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support 	Students explore how having a mutated allele that codes for hemoglobin might convey a genetic advantage and therefore be selected for in specific environments (such as where the parasite that causes malaria is present).

	successful survival and reproduction in the new	
	environment become more common; those that do	
	not become less common. Thus, the distribution of	
	traits in a population changes.	
Practice	Developing and Using Models	Students will use Punnett Squares to model the predict
	 Develop and/or revise a model to show the 	offspring ratios.
	relationships among variables, including those that are	
	not observable but predict observable phenomena.	Students will use a physical model to predict how
	 Develop and/or use a model to predict and/or describe 	changes in red blood cell shape (due to genetic
	phenomena.	differences in the genes that code for the hemoglobin
	 Develop a model to describe unobservable 	protein) will affect blood flow in the body.
	mechanisms.	
	Planning and Carrying out Investigations	Students will use protein gel electrophoresis to
	• Conduct an investigation and/or evaluate and/or revise	generate data to determine genotypes (at the genetic
	the experimental design to produce data to serve as the	locus that codes for hemoglobin protein) of patients
	basis for evidence that meet the goals of the	suspected of having sickle cell anemia.
	investigation.	
	Analyzing and Interpreting Data	Students will analyze the results of their protein gel
	 Analyze and interpret data to provide evidence for a 	electrophoresis test to determine if patients carry the
	phenomena.	mutated gene that causes sickle cell anemia.
	Using Mathematics and Computational Thinking	Students will use Punnett Squares to model the predict
	• Use mathematical representations to describe and/or	offspring ratios.
	support scientific conclusions.	
	• Apply mathematical concepts and/or processes (e.g.	
	ratio) to scientific questions.	
Crosscutting	Patterns	Students will look for patterns in family pedigrees
Concept	 Patterns can be used to identify cause and effect 	related to the occurrence of sickle cell anemia, a
	relationships.	disease that in inherited by offspring from their parents.
	 Graphs, charts, and images can be used to identify 	
	patterns in data.	

Cause and Effect		Students will explore the probability of offspring			
Phenomena may have more t	han one cause, and some	developing sickle cell anemia based on the genotypes of			
cause and effect relationships	in systems can only be	parents.			
described using probability.					
Structure and Function		Students will explore how the structure of red blood			
Complex and microscopic stru	ctures and systems can	can cells can affect their function.			
be visualized, modeled, and u	sed to describe how their				
function depends on the shap	es, composition, and				
relationships among tis parts;	therefore, complex				
natural systems can be analyz	ed to determine how they				
function.					
Nature of Science					
Scientific Knowledge Assumes an Order and Consis	stency in Natural Systems				
Science assumes that objects and events in	natural systems occur in co	nsistent patterns that are understandable through			
measurement and observation.					
Science Addresses Questions About the Natural an	d Material World				
• Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society					
takes.					
Connections to Common Core State Standards	Connections to Common Core State Standards				
English Language Arts/Literacy		Mathematics			
RST.6-8.3		PRACTICE.MP1			
RST.6-8.4		PRACTICE.MP2			
RST.6-8.7		PRACTICE.MP4			
RST.6-8.9		CONTENT.6.RPA.1			
	CONTEN	T.7.RPA.2			